Service Hotline
+86-755-86524100
Knowledge
Home > Knowledge > Content

Product Categories

Цветопередача ЖК-мониторов

Edit: Blaze Display Technology Co.,Ltd      Date: Nov 30, 2017

【R&D Department of Blaze Display】С точки зрения цветопередачи производители обычно указывают лишь одну цифру – количество цветов, которое традиционно равняется 16,2 млн. или 16,7 млн. Впрочем, даже здесь уже есть подвох – дело в том, что очень многие из выпускаемых сейчас матриц (а из "быстрых" матриц – все поголовно) не умеют отображать более 262 тысяч цветов (что соответствует 18 битам, или по 6 бит на каждый из трех базовых цветов).

Изображение на 18-битной матрице без дополнительных мер выглядит весьма грустно – фактически такая матрица годится только для офисной работы да еще (и то – в некоторой степени) для игр. По этой причине производители матриц реализуют в них так называемый FRC (Frame Rate Control) – метод эмуляции недостающих цветов, при котором цвет пиксела меняется с каждым кадром в небольших пределах. Допустим, нам надо вывести цвет RGB:{154; 154; 154}, который наша матрица физически не поддерживает, однако она поддерживает два соседних цвета – RGB:{152; 152; 152} и RGB:{156; 156; 156}. Если теперь поочередно (с частотой кадровой развертки) выводить эти два цвета, то, в результате близости их цветов и инерционности как человеческого глаза (очевидно, не воспринимающего мерцание на частоте 60Гц), так и самой матрицы ("сглаживающей" момент переключения цветов) мы будем видеть некий усредненный цвет, то есть искомый RGB:{154; 154; 154}. Разумеется, это все же эмуляция, не дотягивающая до полноценной "true color" цветопередачи, а потому в описаниях мониторов с такими матрицами обычно указывают, что он воспроизводит 16,2 млн. цветов – иначе говоря, указание такого количества цветов однозначно говорит о том, что у монитора 18-битная матрица. К сожалению, указание, что монитор воспроизводит 16,7 млн. цветов, еще ни о чем не говорит – многие производители так маркируют модели с теми же 18-битными матрицами.

На практике могут применяться более сложные механизмы FRC, работающие в сочетании с более привычным для пользователей дизерингом (когда нужный цвет формируется несколькими расположенными рядом пикселами с немного различающимися цветами), то есть меняющие на каждом кадре цвет не одного пиксела, а, скажем, группы из четырех пикселов – это позволяет более точно передавать недоступные матрице оттенки цвета, однако суть от этого в общем-то не меняется – "полноцветными" такие матрицы можно называть лишь условно.

Соответственно, качество цветопередачи таких матриц во многом определяется качеством реализации FRC. В основном, встречаются две проблемы – во-первых, это поперечные полосы на плавных цветовых градиентах, в наиболее плачевных случаях выглядящие так, как будто в матрице и нет никакого FRC. Впрочем, этот недостаток скорее относится к первому поколению "быстрых" матриц и на последних моделях мониторов встречается редко, хотя легкая "полосатость" градиентов иногда все же проявляется. Во-вторых, на некоторых сложных картинках (например, на однопиксельной сеточке, а уж тем более если она сочетается с плавным градиентом) алгоритмы FRC могут давать сбои, приводящие к мерцанию изображения – от едва заметного до очень сильного, делающего невозможной работу за монитором. Впрочем, последнее на современных мониторах тоже встречается достаточно редко и обычно оказывается уделом совсем недорогих моделей производителей. Также стоит помнить, что качество работы FRC (и, соответственно, связанные с ним побочные эффекты) может зависеть от установленной на мониторе контрастности и яркости (в случае, если последняя регулируется матрицей, а не лампами подсветки) – в такой ситуации мерцание картинки может возникать только на определенных настройках монитора. Впрочем, во всех случаях мерцание, как правило, возникает только на достаточно специфичных изображениях, не мешая обычной работе с монитором.

Следующая после разрядности матрицы проблема обеспечения качественной цветопередачи – это гамма-компенсация. Выше, говоря про яркость и контрастность, я для простоты писал, что зависимость между входным сигналом и яркостью пиксела линейная (), но на самом деле это не так – зависимость эта степенная и выглядит как , гдеgamma – некоторое число.

Можно сказать, что гамма-компенсация появилась и существует более по историческим причинам, нежели по техническим – дело в том, что электронно-лучевые трубки сами по себе имеют передаточную характеристику (то есть зависимость между входным и выходным сигналами), близкую к степенной, с показателем около 2,5. На операционных системах для PC долгое время не было никаких средств управления цветом (CMS – Color Management System), а потомуgamma=2,5 традиционно считается стандартным значением для Wintel-платформы. На Apple Macintosh, традиционно использовавшихся для полиграфии, обработки фотоизображений, цветокоррекции и подобных задач, значение gammaчастично корректировалось – оно уменьшалось до 1,8. Разумеется, чтобы пользователь видел на экране неискаженную картинку, она должна быть предварительно обработана функцией , где i – итоговая яркость, I – исходная яркость картинки, а gamma – то же самое число gamma, как и на системе, для просмотра на которой эта картинка обрабатывается; тогда для пользователя картинка будет описываться формулой , то есть он увидит оригиналI, скорректированный лишь с учетом контрастности C и яркости B монитора. Так как значение gamma отличается для разных платформ, то и изображения требовалось компенсировать по-разному, а потому, например, изображение, подготовленное для Mac'а, на PC выглядело слишком темным, а подготовленное для PC – наоборот, выглядело слишком светлым на Mac'е. Поэтому около десяти лет тому назад при активном участии Microsoft и HP был разработан стандарт sRGB "A Standard Default Color Space for the Internet", в котором значение gamma было определено равным 2,2 (точнее говоря, в sRGB гамма-кривая составлена из двух независимых функций, но она достаточно точно описывается и одной функцией при gamma=2,2) – таким образом, подготовленные в соответствии с sRGB изображения одинаково хорошо (или, как предпочитают говорить скептики, одинаково плохо) выглядели как на Mac'ах, так и на старых PC с gamma=2,5. На данный момент sRGB является стандартом как de jure, так и de facto, и современные мониторы в большинстве своем изначально калибруются на gamma=2,2.

Разумеется, возникает вопрос, а зачем нужна гамма-компенсация с технической точки зрения? Обычно в обоснование необходимости компенсации говорят, что она позволяет увеличить точность передачи темных оттенков (разумеется, за счет уменьшения точности передачи светлых) – ведь человеческий глаз имеет логарифмическую характеристику чувствительности, то есть он намного легче замечает изменение темных тонов, чем такое же по величине изменение светлых, а потому точностью передачи светлых тонов можно и пожертвовать. Теоретический расчет показывает, что приgamma=2,2 точность, эквивалентная 9-битному кодированию, достигается только для 7% наиболее темных оттенков, а эквивалентная 10-битному – лишь для 3% (очевидно, что смысла говорить об 11-битной точности передачи темных оттенков уже нет – те цвета, для которых она достигается, практически неотличимы от черного), но при этом для 75% светлых оттенков точность цветопередачи падает – это сравнимо с потерями при сохранении в JPEG со средним качеством (если, конечно, не учитывать то, что JPEG привносит еще и геометрические артефакты, а не только ухудшение цветопередачи). Казалось бы, все хорошо, и с учетом вышеупомянутых особенностей зрения можно возрадоваться тому, что мы улучшили точность передачи темных цветов и не обращать внимание на ухудшение качества светлых, но, увы, на практике все далеко не так хорошо. Во-первых, изображения имеют не идеальное качество – они ограничены возможностями фотоаппарата (сканера, et cetera), с помощью которого они были получены; если говорить о темных тонах, то точность их передачи в первую очередь определяется уровнем шума CCD или CMOS-матрицы камеры (причин шума может быть много – фотонный дробовой шум, шум считывания, темновой ток матрицы и так далее). Так вот, отношение сигнал-шум даже для высококачественных камер с охлаждаемыми матрицами, применяемыми в научных целях (в астрономии, спектроскопии, микробиологии и так далее), для очень хорошей камеры составляет 60...65 дБ (для достижения таких цифр применяется как минимум двухступенчатое охлаждение элементами Пельтье с активным воздушным охлаждением их радиаторов и итоговой температурой CCD-матрицы порядка -10...-40 градусов) – что соответствует точности около 10 бит (1 бит = 6,2 дБ); обычные же фотокамеры, вплоть до профессиональных, обеспечивают отношение сигнал-шум в лучшем случае 40...50 дБ, что соответствует точности всего лишь 7...8 бит. Иначе говоря, какой смысл в дополнительных битах точности, если даже при стандартной 8-битной точности младший бит фактически передает только шум матрицы?

Feedback
Send
Contact Us
Address: 5th Floor, HSAE Tech Building, Hi-Tech Park, Nanshan, Shenzhen, 518057, China
Tel: +86-755-86524100
Fax: +86-755-86524101
E-mail: info@blazedisplay.com
E-mail: info@blazedisplay.com  Copyright © 2017 Blaze Display Technology Co.,Ltd All Rights Reserved